Discrete Nonholonomic LL Systems on Lie Groups

نویسندگان

  • Yuri N. Fedorov
  • Dmitry V. Zenkov
چکیده

This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie group G. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conservation is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euler – Lagrange Equations for Nonholonomic Systems

This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...

متن کامل

Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...

متن کامل

Integrators for Nonholonomic Mechanical Systems

We study a discrete analog of the Lagrange-d’Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic syst...

متن کامل

Motion Control for Nonholonomic Systems on Matrix Lie Groups

Title of Dissertation: Motion Control for Nonholonomic Systems on Matrix Lie Groups Herbert Karl Struemper, Doctor of Philosophy, 1997 Dissertation directed by: Professor P. S. Krishnaprasad Department of Electrical Engineering In this dissertation we study the control of nonholonomic systems defined by invariant vector fields on matrix Lie groups. We make use of canonical constructions of coor...

متن کامل

Momentum and Energy Preserving Integrators for Nonholonomic Dynamics

In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian Ld : Q × Q → R, where Q is the configuration manifold, and a (generally nonintegrable) distribution D ⊂ TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005